

GCE PHYSICS

S21-A420QS

Assessment Resource number 22 Light and Nuclei Resource D

(a)	State	the	diff	fere	en	ce	be	etw	/ee	en	tra	an 	SV	er	se	a	ind	 (on	gi	tuc	dir	nal	w	av	'es	S. 									[2]
(b)	The v two g																			si	tio	n	an	d	tin	ne	is	sl	ho	wr	n ir	n th	ne	foll	OW	ing
Disele			3ra	ph	of	di	s	pla	ce	m	er	nt	ag	a	ins	st	di	st	ar	ıc	е	(a	t a	g	iv	en	ti	m	e)							
Displac	cement	/ cr	n																																	
0.0	0.2	<u></u>	0	0.4			0.	6		7	8.0	3			1.0):		\	1.	2,			1	4			1	.6	/		1. D	.8	an	2 ce	o / m	1
À	acemer	nt / c	m	111																																
0 0.0 0.0	0.0	05		0.10			0.	.15			0.2	20:			0.2	25			8	30			0.	35			0.	40.	2		0.4	45	Tin	0.	50 / s	
	(i)	St	ate	the	e e	amį	pli	tud	le	of	the	e ı	wa	VE	Э.																					[1]
	(ii)	St	ate	the	e v	va۱	/el	len	gtl	h c	of t	he	e w	/a	ve.																					[1]
(iii)	Calcu	ılate	th	e s	pe	ee	d (of t	the	e v	va	VE). 																							[3]

(c) A wavefront diagram for waves on the surface of water is shown.

- (i) Draw an arrow to indicate the direction of motion of the wavefront at point S. [1]
- (ii) State the point(s) oscillating in phase with point P.[1]

2 (a)	Singl belov	e slit diffractio v. The two di	n of ligh fferent o	t is demonst diffraction pa	trated b atterns	y using a red are obtained	laser and the	e results a the slit w	are shown vidth only.
Figure 2a					-				
Figure 2b					_			-	
	(i)	Explain whe	ther Fig	ure 2a or Fi	igure 2t	has the wide	er slit.		[2]
	(ii)	State what c	an be do	one to the si	ingle sli	t to obtain the	greatest am	nount of d	iffraction. [1]
		ppropriate tatern to be			hich o	f the followi	ng arrange	ements a	allow an [2]
Sig		Loud speakers		Yes					Yes
gen				No	Sod	ium lamp Singl sl			No
				Yes	L	Red laser			Yes
Microv source		Metal plates		No	7	Blue laser	\		No

Diagram not to scale

.....

3

(a)	(i)	Explain why a population inversion is not usually possible with a 2-level esystem pumped using light.	energy [2]
	(ii)	State an advantage of semiconductor lasers and an example of their use.	[2]

(b)	 Explain how 3-level and 4-level laser systems work and the advantage system. Refer to the diagrams in your answer. 										
	3-level system	4-level system									
	E ₃	- E ₄									
	E ₂	E ₃									
	L ₂	E ₂									
	E ₁	- E ₁									
•••••											

(a) The following circuit is used to find the pd across an LED when it is switched on.

Aled decides that the LED is switched on when a current of 10.0 mA passes through it. He adjusts the variable power supply and records the switching-on pd. He repeats this procedure for different LEDs which emit light of different wavelengths. His results are tabulated below.

(i) Complete the table.

[2]

Wavelength λ of LED / nm	$\frac{1}{\lambda}$ / m ⁻¹	Switching-on pd / V (± 10%)
465	2.15 × 10 ⁶	2.78 ± 0.28
569	× 10 ⁶	2.26 ±
660	1.52 × 10 ⁶	1.91 ± 0.19
820	1.22×10^{6}	1.47 ± 0.15
890	× 10 ⁶	1.44 ±
950	1.05 × 10 ⁶	1.29 ± 0.13

- (ii) Complete the graph by plotting the **two** missing points whose values you have calculated together with their error bars. [2]
- (iii) Draw the line of maximum gradient and the line of minimum gradient through the error bars.[2]

(i)	Use your two lines from (a)(iii) to obtain a value for the Planck constant along its absolute uncertainty to an appropriate number of significant figures.
	Explain to what output Alad's data displayed in the graph confirm the relational
(ii)	Explain to what extent Aled's data displayed in the graph confirm the relationsl
	$eV = \frac{hc}{\lambda}$
Suge t	$eV = \frac{hc}{\lambda}$ gest one reason why choosing a constant current of 10.0 mA is better than using you detect the emitted radiation for these LEDs.
Suggeye 1	
Suggeye 1	

(b) Conservation of energy applied to an electron and photon involved in the light emitting process of the LED gives: (d) The Planck constant can also be determined using the photoelectric effect. Light of various frequencies is incident on a calcium photoelectric cell as shown and the maximum kinetic energy, E_{k max}, of the emitted electrons is determined for each frequency, f.

The following graph is obtained.

$$E_{
m k\,max}$$
 / 10⁻¹⁹ J

(i)	Determine a value for the Planck constant.	[2]
(ii)	Determine a value of the work function of calcium and explain why no data point are possible below a frequency of $6.9\times10^{14}\text{Hz}.$	nts [3]